Zinc-binding and structural properties of the histidine-rich loop of Arabidopsis thaliana vacuolar membrane zinc transporter MTP1☆

نویسندگان

  • Natsuki Tanaka
  • Miki Kawachi
  • Takashi Fujiwara
  • Masayoshi Maeshima
چکیده

The vacuolar Zn(2+)/H(+) antiporter of Arabidopsis thaliana, AtMTP1, has a cytosolic histidine-rich loop (His-loop). We characterized the structures and Zn(2+)-binding properties of the His-loop and other domains. Circular dichroism analyses revealed that the His-loop partly consists of a polyproline type II structure and that its conformational change is induced by Zn(2+) as well as the C-terminal domain. Isothermal titration calorimetry of the His-loop revealed a binding number of four Zn(2+) per molecule. Numbers of Ni and Co associated with the His-loop were approximately one ion per molecule and the thermodynamic parameters of the association with these ions were different from that of Zn(2+). These results suggest the involvement of the His-loop in sensing cytosolic Zn(2+) and in the regulation of zinc transport activity through Zn(2+)-induced structural change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc.

A mutant line of Arabidopsis thaliana that lacks a vacuolar membrane Zn(2+)/H(+) antiporter MTP1 is sensitive to zinc. We examined the physiological changes in this loss-of-function mutant under high-Zn conditions to gain an understanding of the mechanism of adaptation to Zn stress. When grown in excessive Zn and observed using energy-dispersive X-ray analysis, wild-type roots were found to acc...

متن کامل

Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis.

Cation diffusion facilitator (CDF) proteins belong to a family of heavy metal efflux transporters that might play an essential role in homeostasis and tolerance to metal ions. We investigated the subcellular localization of Arabidopsis thaliana AtMTP1, a member of the CDF family, and its physiological role in the tolerance to Zn using MTP1-deficient mutant plants. AtMTP1 was immunochemically de...

متن کامل

Functional analysis of the rice vacuolar zinc transporter OsMTP1

Heavy metal homeostasis is maintained in plant cells by specialized transporters which compartmentalize or efflux metal ions, maintaining cytosolic concentrations within a narrow range. OsMTP1 is a member of the cation diffusion facilitator (CDF)/metal tolerance protein (MTP) family of metal cation transporters in Oryza sativa, which is closely related to Arabidopsis thaliana MTP1. Functional c...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri

Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transpor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013